Skip to content

Approximation of Gaussian Curvature

The sizing of the bottom topography is done using the Gaussian curvature of the surface using the GaussianCurvature class.

From wikipedia, the Gaussian curvature for a surface \(f(x,y) - z = F(x,y,z) = 0\) is

\[ \begin{equation} K=-\frac{1}{|\nabla F|^4} \left|\begin{array}{cc}H(F) & \nabla F^T \\\nabla F & 0\end{array}\right|=-\frac{1}{|\nabla F|^4}\left|\begin{array}{cccc}F_{xx} & F_{xy} & F_{xz} & F_x \\F_{xy} & F_{yy} & F_{yz} & F_y \\F_{xz} & F_{yz} & F_{zz} & F_z \\F_x & F_y & F_z & 0\end{array}\right| \end{equation} \]

where \(H\) is the Hessian matrix.

Filling in the derivatives,

\[ \begin{equation} K=-\frac{1}{|\nabla F|^4}\left|\begin{array}{cccc}f_{xx} & f_{xy} & 0 & f_x \\f_{xy} & f_{yy} & 0 & f_y \\0 & 0 & 0 & -1 \\f_x & f_y & -1 & 0\end{array}\right| \end{equation} \]

where \(|\nabla F|^4 = (f_x^2 + f_y^2 + 1)^2\).

Then

\[ \begin{equation}\begin{split} -{|\nabla F|^4}K &= \left|\begin{array}{cccc}f_{xx} & f_{xy} & 0 & f_x \\f_{xy} & f_{yy} & 0 & f_y \\0 & 0 & 0 & -1 \\f_x & f_y & -1 & 0\end{array}\right| \\[0.2cm] &= f_{xx}\left|\begin{array}{ccc}f_{yy} & 0 & f_y \\0 & 0 & -1 \\f_y & -1 & 0\end{array}\right| - f_{xy}\left|\begin{array}{ccc}f_{xy} & 0 & f_y \\0 & 0 & -1 \\f_x & -1 & 0\end{array}\right| -f_x\left|\begin{array}{ccc}f_{xy} & f_{yy} & 0 \\0 & 0 & 0 \\f_x & f_y & -1\end{array}\right| \\[0.2cm] &= f_{xx}f_{yy}-f^2_{xy} \end{split} \end{equation} \]

So, finally,

\[ \begin{equation} K = \frac{f_{xx}f_{yy}-f^2_{xy}}{ (f_x^2 + f_y^2 + 1)^2} \end{equation} \]

Example: For a sphere, \(z = \sqrt{1 - (x^2+y^2)}= f(x,y)\), \(K=1\).

To approximate \(K\), we compute a centered finite difference approximation to the first derivatives

\[ \begin{equation} \begin{gathered} f_x\approx \frac{f(x+h,y) - f(x-h,y)}{2h}\\[0.2cm] f_y\approx \frac{f(x,y+h) - f(x,y-h)}{2h}\\ \end{gathered} \end{equation} \]

and similarly for the second derivatives,

\[ \begin{equation} \begin{gathered} f_{xx} \approx \frac{f(x+h,y) -2f(x,y) + f(x-h,y)}{h^2}\\[0.2cm] f_{yy} \approx \frac{f(x,y+h) -2f(x,y) + f(x,y+h)}{h^2}\\[0.2cm] f_{xy} = f_{yx}\approx \frac{f(x+h,y+h) - f(x-h,y+h)- f(x+h,y-h) + f(x-h,y-h)}{4\Delta x\Delta y} \end{gathered} \end{equation} \]

The step size is taken to be \(h = 10^{-4}\).