16: Structured mesh with curvilinear mapping

Here, we want to introduce another mesh type of Trixi.jl. More precisely, this tutorial is about the curved mesh type StructuredMesh supporting curved meshes.

Creating a curved mesh

There are two basic options to define a curved StructuredMesh in Trixi.jl. You can implement curves for the domain boundaries, or alternatively, set up directly the complete transformation mapping. We now present one short example each.

Mesh defined by domain boundary curves

Both examples are based on a semdiscretization of the 2D compressible Euler equations.

using OrdinaryDiffEq
using Trixi

equations = CompressibleEulerEquations2D(1.4)
┌──────────────────────────────────────────────────────────────────────────────────────────────────┐
│ CompressibleEulerEquations2D                                                                     │
│ ════════════════════════════                                                                     │
│ #variables: ………………………………………………… 4                                                                │
│ │ variable 1: …………………………………………… rho                                                              │
│ │ variable 2: …………………………………………… rho_v1                                                           │
│ │ variable 3: …………………………………………… rho_v2                                                           │
│ │ variable 4: …………………………………………… rho_e                                                            │
└──────────────────────────────────────────────────────────────────────────────────────────────────┘

We start with a pressure perturbation at (xs, 0.0) as initial condition.

function initial_condition_pressure_perturbation(x, t,
                                                 equations::CompressibleEulerEquations2D)
    xs = 1.5 # location of the initial disturbance on the x axis
    w = 1 / 8 # half width
    p = exp(-log(2) * ((x[1] - xs)^2 + x[2]^2) / w^2) + 1.0
    v1 = 0.0
    v2 = 0.0
    rho = 1.0

    return prim2cons(SVector(rho, v1, v2, p), equations)
end
initial_condition = initial_condition_pressure_perturbation
initial_condition_pressure_perturbation (generic function with 1 method)

Initialize every boundary as a boundary_condition_slip_wall.

boundary_conditions = boundary_condition_slip_wall
boundary_condition_slip_wall (generic function with 11 methods)

The approximation setup is an entropy-stable split-form DG method with polydeg=4. We are using the two fluxes flux_ranocha and flux_lax_friedrichs.

solver = DGSEM(polydeg = 4, surface_flux = flux_lax_friedrichs,
               volume_integral = VolumeIntegralFluxDifferencing(flux_ranocha))
┌──────────────────────────────────────────────────────────────────────────────────────────────────┐
│ DG{Float64}                                                                                      │
│ ═══════════                                                                                      │
│ basis: ……………………………………………………………… LobattoLegendreBasis{Float64}(polydeg=4)                         │
│ mortar: …………………………………………………………… LobattoLegendreMortarL2{Float64}(polydeg=4)                      │
│ surface integral: ………………………………… SurfaceIntegralWeakForm                                          │
│ │ surface flux: ……………………………………… FluxLaxFriedrichs(max_abs_speed_naive)                           │
│ volume integral: …………………………………… VolumeIntegralFluxDifferencing                                   │
│ │ volume flux: ………………………………………… flux_ranocha                                                     │
└──────────────────────────────────────────────────────────────────────────────────────────────────┘

We want to define a circular cylinder as physical domain. It contains an inner semicircle with radius r0 and an outer semicircle of radius r1.

The domain boundary curves with curve parameter in $[-1,1]$ are sorted as shown in the sketch. They always are orientated from negative to positive coordinate, such that the corners have to fit like this $f_1(+1) = f_4(-1)$, $f_3(+1) = f_2(-1)$, etc.

In our case we can define the domain boundary curves as follows:

r0 = 0.5 # inner radius
r1 = 5.0 # outer radius
f1(xi) = SVector(r0 + 0.5 * (r1 - r0) * (xi + 1), 0.0) # right line
f2(xi) = SVector(-r0 - 0.5 * (r1 - r0) * (xi + 1), 0.0) # left line
f3(eta) = SVector(r0 * cos(0.5 * pi * (eta + 1)), r0 * sin(0.5 * pi * (eta + 1))) # inner circle
f4(eta) = SVector(r1 * cos(0.5 * pi * (eta + 1)), r1 * sin(0.5 * pi * (eta + 1))) # outer circle
f4 (generic function with 1 method)

We create a curved mesh with 16 x 16 elements. The defined domain boundary curves are passed as a tuple.

cells_per_dimension = (16, 16)
mesh = StructuredMesh(cells_per_dimension, (f1, f2, f3, f4), periodicity = false)
┌──────────────────────────────────────────────────────────────────────────────────────────────────┐
│ StructuredMesh{2, Float64}                                                                       │
│ ══════════════════════════                                                                       │
│ size: ………………………………………………………………… (16, 16)                                                         │
│ mapping: …………………………………………………………                                                                  │
│ │ line 1: ……………………………………………………… nothing
nothing
nothing
nothing
…ng = transfinite_mapping(faces) │
└──────────────────────────────────────────────────────────────────────────────────────────────────┘

Then, we define the simulation with endtime T=3 with semi, ode and callbacks.

semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
                                    boundary_conditions = boundary_conditions)

tspan = (0.0, 3.0)
ode = semidiscretize(semi, tspan)

analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval = analysis_interval)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

stepsize_callback = StepsizeCallback(cfl = 0.9)

callbacks = CallbackSet(analysis_callback,
                        alive_callback,
                        stepsize_callback);

Running the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
            dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
            save_everystep = false, callback = callbacks);

using Plots
plot(sol)
Example block output
pd = PlotData2D(sol)
plot(pd["p"])
plot!(getmesh(pd))
Example block output

Mesh directly defined by the transformation mapping

As mentioned before, you can also define the domain for a StructuredMesh by directly setting up a transformation mapping. Here, we want to present a nice mapping, which is often used to test free-stream preservation. Exact free-stream preservation is a crucial property of any numerical method on curvilinear grids. The mapping is a reduced 2D version of the mapping described in Rueda-Ramírez et al. (2021), p.18.

using OrdinaryDiffEq
using Trixi

equations = CompressibleEulerEquations2D(1.4)
┌──────────────────────────────────────────────────────────────────────────────────────────────────┐
│ CompressibleEulerEquations2D                                                                     │
│ ════════════════════════════                                                                     │
│ #variables: ………………………………………………… 4                                                                │
│ │ variable 1: …………………………………………… rho                                                              │
│ │ variable 2: …………………………………………… rho_v1                                                           │
│ │ variable 3: …………………………………………… rho_v2                                                           │
│ │ variable 4: …………………………………………… rho_e                                                            │
└──────────────────────────────────────────────────────────────────────────────────────────────────┘

As mentioned, this mapping is used for testing free-stream preservation. So, we use a constant initial condition.

initial_condition = initial_condition_constant

solver = DGSEM(polydeg = 3, surface_flux = flux_lax_friedrichs)
┌──────────────────────────────────────────────────────────────────────────────────────────────────┐
│ DG{Float64}                                                                                      │
│ ═══════════                                                                                      │
│ basis: ……………………………………………………………… LobattoLegendreBasis{Float64}(polydeg=3)                         │
│ mortar: …………………………………………………………… LobattoLegendreMortarL2{Float64}(polydeg=3)                      │
│ surface integral: ………………………………… SurfaceIntegralWeakForm                                          │
│ │ surface flux: ……………………………………… FluxLaxFriedrichs(max_abs_speed_naive)                           │
│ volume integral: …………………………………… VolumeIntegralWeakForm                                           │
└──────────────────────────────────────────────────────────────────────────────────────────────────┘

We define the transformation mapping with variables in $[-1, 1]$ as described in Rueda-Ramírez et al. (2021), p.18 (reduced to 2D):

function mapping(xi_, eta_)
    # Transform input variables between -1 and 1 onto [0,3]
    xi = 1.5 * xi_ + 1.5
    eta = 1.5 * eta_ + 1.5

    y = eta + 3 / 8 * (cos(1.5 * pi * (2 * xi - 3) / 3) *
                       cos(0.5 * pi * (2 * eta - 3) / 3))

    x = xi + 3 / 8 * (cos(0.5 * pi * (2 * xi - 3) / 3) *
                      cos(2 * pi * (2 * y - 3) / 3))

    return SVector(x, y)
end
mapping (generic function with 1 method)

Instead of a tuple of boundary functions, the mesh now has the mapping as its parameter.

cells_per_dimension = (16, 16)
mesh = StructuredMesh(cells_per_dimension, mapping)

semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver)

tspan = (0.0, 1.0)
ode = semidiscretize(semi, tspan)

analysis_callback = AnalysisCallback(semi, interval = 250)

stepsize_callback = StepsizeCallback(cfl = 0.8)

callbacks = CallbackSet(analysis_callback,
                        stepsize_callback)

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
            dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
            save_everystep = false, callback = callbacks);

────────────────────────────────────────────────────────────────────────────────────────────────────
 Simulation running 'CompressibleEulerEquations2D' with DGSEM(polydeg=3)
────────────────────────────────────────────────────────────────────────────────────────────────────
 #timesteps:                  0                run time:       7.11000000e-07 s
 Δt:             1.00000000e+00                └── GC time:    0.00000000e+00 s (0.000%)
 sim. time:      0.00000000e+00 (0.000%)       time/DOF/rhs!:         NaN s
                                               PID:                   Inf s
 #DOFs per field:          4096                alloc'd memory:       1353.236 MiB
 #elements:                 256

 Variable:       rho              rho_v1           rho_v2           rho_e
 L2 error:       7.14879109e-17   1.26068516e-17   2.52137032e-17   1.28610275e-15
 Linf error:     2.22044605e-16   2.77555756e-17   5.55111512e-17   3.55271368e-15
 ∑∂S/∂U ⋅ Uₜ :   6.39244457e-17
────────────────────────────────────────────────────────────────────────────────────────────────────


────────────────────────────────────────────────────────────────────────────────────────────────────
 Simulation running 'CompressibleEulerEquations2D' with DGSEM(polydeg=3)
────────────────────────────────────────────────────────────────────────────────────────────────────
 #timesteps:                250                run time:       2.01568402e-01 s
 Δt:             2.33008558e-03                └── GC time:    0.00000000e+00 s (0.000%)
 sim. time:      5.82521395e-01 (58.252%)      time/DOF/rhs!:  3.52286808e-08 s
                                               PID:            3.91528363e-08 s
 #DOFs per field:          4096                alloc'd memory:       1357.869 MiB
 #elements:                 256

 Variable:       rho              rho_v1           rho_v2           rho_e
 L2 error:       2.46914189e-15   1.94336947e-14   2.20134956e-14   1.45208464e-14
 Linf error:     2.16493490e-14   2.07611706e-13   2.74003042e-13   2.25597319e-13
 ∑∂S/∂U ⋅ Uₜ :  -1.05103567e-17
────────────────────────────────────────────────────────────────────────────────────────────────────


────────────────────────────────────────────────────────────────────────────────────────────────────
 Simulation running 'CompressibleEulerEquations2D' with DGSEM(polydeg=3)
────────────────────────────────────────────────────────────────────────────────────────────────────
 #timesteps:                430                run time:       3.46354903e-01 s
 Δt:             3.93286656e-04                └── GC time:    0.00000000e+00 s (0.000%)
 sim. time:      1.00000000e+00 (100.000%)     time/DOF/rhs!:  3.50789422e-08 s
                                               PID:            3.90252498e-08 s
 #DOFs per field:          4096                alloc'd memory:       1362.573 MiB
 #elements:                 256

 Variable:       rho              rho_v1           rho_v2           rho_e
 L2 error:       3.23698099e-15   2.13754276e-14   2.82614161e-14   1.56475906e-14
 Linf error:     2.34257058e-14   2.27595720e-13   3.36758399e-13   2.32702746e-13
 ∑∂S/∂U ⋅ Uₜ :   5.15813726e-17
────────────────────────────────────────────────────────────────────────────────────────────────────

Now, we want to verify the free-stream preservation property and plot the mesh. For the verification, we calculate the absolute difference of the first conservation variable density u[1] and 1.0. To plot this error and the mesh, we are using the visualization feature ScalarPlotData2D, explained in visualization.

error_density = let u = Trixi.wrap_array(sol.u[end], semi)
    abs.(u[1, :, :, :] .- 1.0) # density, x, y, elements
end
pd = ScalarPlotData2D(error_density, semi)

using Plots
plot(pd, title = "Error in density")
plot!(getmesh(pd))
Example block output

We observe that the errors in the variable density are at the level of machine accuracy. Moreover, the plot shows the mesh structure resulting from our transformation mapping.

Of course, you can also use other mappings as for instance shifts by $(x, y)$

mapping(xi, eta) = SVector(xi + x, eta + y)

or rotations with a rotation matrix $T$

mapping(xi, eta) = T * SVector(xi, eta).

For more curved mesh mappings, please have a look at some elixirs for StructuredMesh. For another curved mesh type, there is a tutorial about Trixi.jl's unstructured mesh type [UnstructuredMesh2D] and its use of the High-Order Hex-Quad Mesh (HOHQMesh) generator, created and developed by David Kopriva.

Package versions

These results were obtained using the following versions.

using InteractiveUtils
versioninfo()

using Pkg
Pkg.status(["Trixi", "OrdinaryDiffEq", "Plots"],
           mode = PKGMODE_MANIFEST)
Julia Version 1.10.7
Commit 4976d05258e (2024-11-26 15:57 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 4 × AMD EPYC 7763 64-Core Processor
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)
Environment:
  JULIA_PKG_SERVER_REGISTRY_PREFERENCE = eager
Status `~/work/Trixi.jl/Trixi.jl/docs/Manifest.toml`
 [1dea7af3] OrdinaryDiffEq v6.66.0
  [91a5bcdd] Plots v1.40.9
  [a7f1ee26] Trixi v0.9.8 `~/work/Trixi.jl/Trixi.jl`
Info Packages marked with  have new versions available and may be upgradable.

This page was generated using Literate.jl.