[1]
K. Hormann and A. Agathos. The point in polygon problem for arbitrary polygons. Computational Geometry 20, 131–144 (2001).
[2]
A. Jacobson, L. Kavan and O. Sorkine-Hornung. Robust inside-outside segmentation using generalized winding numbers. ACM Transactions on Graphics 32, 1–12 (2013).
[3]
M. Müller, D. Charypar and M. Gross. Particle-Based Fluid Simulation for Interactive Applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Eurographics Association, 07 2003); pp. 154–159.
[4]
I. J. Schoenberg. Contributions to the problem of approximation of equidistant data by analytic functions. Part B. On the problem of osculatory interpolation. A second class of analytic approximation formulae. Quarterly of Applied Mathematics 4, 112–141 (1946).
[5]
D. J. Price. Smoothed particle hydrodynamics and magnetohydrodynamics. Journal of Computational Physics 231, 759–794 (2012).
[6]
J. Monaghan. Particle methods for hydrodynamics. Computer Physics Reports 3, 71–124 (1985).
[7]
H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics 4, 389–396 (1995).
[8]
W. Dehnen and H. Aly. Improving convergence in smoothed particle hydrodynamics simulations without pairing instability: SPH without pairing instability. Monthly Notices of the Royal Astronomical Society 425, 1068–1082 (2012).
[9]
N. Bićanić. Discrete Element Methods. In: Discrete Element Methods (Wiley, 2004).
[10]
P. A. Cundall and O. D. Strack. A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979).
[11]
A. Di Renzo and F. P. Di Maio. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chemical Engineering Science 59, 525–541 (2004).
[12]
J. Monaghan. Simulating Free Surface Flows with SPH. Journal of Computational Physics 110, 399–406 (1994).
[13]
R. H. Cole and R. Weller. Underwater Explosions. Physics Today 1, 35–35 (1948).
[14]
S. Adami, X. Hu and N. Adams. A generalized wall boundary condition for smoothed particle hydrodynamics. Journal of Computational Physics 231, 7057–7075 (2012).
[15]
J. P. Morris, P. J. Fox and Y. Zhu. Modeling Low Reynolds Number Incompressible Flows Using SPH. Journal of Computational Physics 136, 214–226 (1997).
[16]
J. J. Monaghan. Smoothed Particle Hydrodynamics. Annual Review of Astronomy and Astrophysics 30, 543–574 (1992).
[17]
[18]
J. J. Monaghan. Smoothed particle hydrodynamics. Reports on Progress in Physics 68, 1703–1759 (2005).
[19]
P. Ramachandran and K. Puri. Entropically damped artificial compressibility for SPH. Computers & Fluids 179, 579–594 (2019).
[20]
G. Fourtakas, J. M. Dominguez, R. Vacondio and B. D. Rogers. Local uniform stencil (LUST) boundary condition for arbitrary 3-D boundaries in parallel smoothed particle hydrodynamics (SPH) models. Computers & Fluids 190, 346–361 (2019).
[21]
M. Antuono, A. Colagrossi and S. Marrone. Numerical diffusive terms in weakly-compressible SPH schemes. Computer Physics Communications 183, 2570–2580 (2012).
[22]
M. Antuono, A. Colagrossi, S. Marrone and D. Molteni. Free-surface flows solved by means of SPH schemes with numerical diffusive terms. Computer Physics Communications 181, 532–549 (2010).
[23]
D. Molteni and A. Colagrossi. A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Computer Physics Communications 180, 861–872 (2009).
[24]
A. Ferrari, M. Dumbser, E. F. Toro and A. Armanini. A new 3D parallel SPH scheme for free surface flows. Computers & Fluids 38, 1203–1217 (2009).
[25]
N. Akinci, G. Akinci and M. Teschner. Versatile surface tension and adhesion for SPH fluids. ACM Transactions on Graphics 32, 1–8 (2013).
[26]
J. Bonet and T.-S. Lok. Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations. Computer Methods in Applied Mechanics and Engineering 180, 97–115 (1999).
[27]
M. Basa, N. J. Quinlan and M. Lastiwka. Robustness and accuracy of SPH formulations for viscous flow. International Journal for Numerical Methods in Fluids 60, 1127–1148 (2008).
[28]
S. Li and W. K. Liu. Moving least-square reproducing kernel method Part II: Fourier analysis. Computer Methods in Applied Mechanics and Engineering 139, 159–193 (1996).
[29]
J. R. Clausen. Entropically damped form of artificial compressibility for explicit simulation of incompressible flow. Physical Review E 87, 013309 (2013).
[30]
S. Adami, X. Hu and N. Adams. A transport-velocity formulation for smoothed particle hydrodynamics. Journal of Computational Physics 241, 292–307 (2013).
[31]
J. O’Connor and B. D. Rogers. A fluid–structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU. Journal of Fluids and Structures 104, 103312 (2021).
[32]
T. Belytschko, Y. Guo, W. K. Liu and S. P. Xiao. A unified stability analysis of meshless particle methods. International Journal for Numerical Methods in Engineering 48, 1359–1400 (2000).
[33]
G. C. Ganzenmüller. An hourglass control algorithm for Lagrangian Smooth Particle Hydrodynamics. Computer Methods in Applied Mechanics and Engineering 286, 87–106 (2015).
[34]
A. Valizadeh and J. J. Monaghan. A study of solid wall models for weakly compressible SPH. Journal of Computational Physics 300, 5–19 (2015).
[35]
N. Akinci, M. Ihmsen, G. Akinci, B. Solenthaler and M. Teschner. Versatile rigid-fluid coupling for incompressible SPH. ACM Transactions on Graphics 31, 1–8 (2012).
[36]
A. J. Crespo, M. Gomez-Gesteira and R. A. Dalrymple. Boundary Conditions Generated by Dynamic Particles in SPH Methods. Computers, Materials and Continua 5, 173–184 (2007).
[37]
S. Band, C. Gissler, A. Peer and M. Teschner. MLS pressure boundaries for divergence-free and viscous SPH fluids. Computers & Graphics 76, 37–46 (2018).
[38]
J. Monaghan and J. Kajtar. SPH particle boundary forces for arbitrary boundaries. Computer Physics Communications 180, 1811–1820 (2009).
[39]
M. B. Giles. Nonreflecting boundary conditions for Euler equation calculations. AIAA Journal 28, 2050–2058 (1990).
[40]
M. Lastiwka, M. Basa and N. J. Quinlan. Permeable and non‐reflecting boundary conditions in SPH. International Journal for Numerical Methods in Fluids 61, 709–724 (2008).
[41]
P. Negi, P. Ramachandran and A. Haftu. An improved non-reflecting outlet boundary condition for weakly-compressible SPH. Computer Methods in Applied Mechanics and Engineering 367, 113119 (2020).
[42]
A. Panizzo, G. Cuomo and R. A. Dalrymple. 3D-SPH SIMULATION OF LANDSLIDE GENERATED WAVES. In: Coastal Engineering 2006 (World Scientific Publishing Company, Apr 2007).
[43]
P. Sun, A. Colagrossi, S. Marrone and A. Zhang. Delta-SPH model: Simple procedures for a further improvement of the SPH scheme. Computer Methods in Applied Mechanics and Engineering 315, 25–49 (2017).
[44]
M. Antuono, S. Marrone, A. Colagrossi and B. Bouscasse. Energy balance in the Delta-SPH scheme. Computer Methods in Applied Mechanics and Engineering 289, 209–226 (2015).